長岡技術科学大学大学院 電気電子情報工学専攻 修士2年 自然言語処理研究室
Mail: maruyama@jnlp.org
■ B3勉強会 自然言語処理のための機械学習
第2回 凝集型クラスタリング / k-means [slide] 第3回 混合正規分布を用いたクラスタリング / EM algorithm [slide] 第4回 ナイーブベイズ分類器_1 (多変数ベルヌーイモデル) [ slide] 第5回 ナイーブベイズ分類器_2 (多変数ベルヌーイモデル) [ slide] 第6回 ナイーブベイズ分類器_3 (多項モデル) [ slide] 第8回 カーネル法 / 対数線形モデル [ slide] ■ 文献紹介 2017年3月 〜
- 新聞記事中の難解語を平易な表現へ変換する手法の提案 [paper] [slide]
- 言語横断質問応答に適した機械翻訳評価尺度の調査 [paper] [slide]
- Simple English Wikipedia: A New Text Simplification Task [paper] [slide]
- Lexical Simplification with Neural Ranking [paper] [slide]
OptimizingStatistical Machine Translation for Text Simplification [paper] [slide]Automatic Text Simplification for Spanish: Comparative Evaluation of Various Simplification Strategies [paper] [slide]Translating from Original to Simplified sentences using Moses: When does it Actually work? [paper] [slide]Exploring Neural Text Simplification Models [paper] [slide]Sentence Alignment Methods for Improving Text Simplification Systems [paper] [slide]
2018年3月 〜
- Split and Rephrase [paper] [slide]
- Supervised Learning of Universal Sentence Representations from Natural Language Inference Data [paper] [slide]
- Sentence Simplification with Memory-Augmented Neural Networks [slide]
- Sentence Simplification with Deep Reinforcement Learning [paper][slide]
- Simplification Using Paraphrases and Context-based Lexical Substitution [paper][slide]
- An Operation Network for Abstractive Sentence Compression [paper][slide]
- Retrieve, Rerank and Rewrite: Soft Template Based Neural
Summarization [paper][slide]
- BLEU is Not Suitable for the Evaluation of Text Simplification [paper][slide]
- Don’t Give Me the Details, Just the Summary!
Topic-Aware Convolutional Neural Networks for Extreme Summarization [paper][slide]
- Integrating Transformer and Paraphrase Rules for Sentence Simplification [paper][slide]
- Understanding Back-Translation at Scale [paper][slide]
- Back-Translation Sampling by Targeting Difficult Words in Neural Machine Translation [paper][slide]
2019年3月 〜
- Dynamic Data Selection for Neural Machine Translation [paper][slide]
- Extract and Edit: An Alternative to Back-Translation for Unsupervised Neural Machine Translation [paper][slide]
- Simple Unsupervised Keyphrase Extraction using Sentence Embeddings [paper][slide]
- Addressing Troublesome Words in Neural Machine Translation [paper][slide]
- An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models [paper][slide]
- Soft Contextual Data Augmentation for Neural Machine Translation [paper][slide]
- Hint-Based Training for Non-Autoregressive Machine Translation [paper][slide]
- What makes a good conversation?
How controllable attributes affect human judgments [paper][slide]
- Controlling Text Complexity in Neural Machine Translation [paper][slide]
- Simple Unsupervised Summarization by Contextual Matching [paper][slide]
- Misspelling Oblivious Word Embeddings [paper][slide]
- Variational Pretraining for Semi-supervised Text Classification [paper][slide]
■ 参加報告 The 32nd Pacific Asia Conference on Language, Information and Computation (PACLIC 32)
言語処理学会第25回年次大会 [slide]
⼭本 和英, 丸⼭ 拓海, ⾓張 ⻯晴, 稲岡 夢⼈, ⼩川 耀⼀朗, 勝⽥ 哲弘, 髙橋 寛治. やさしい日本語対訳コーパスの構築. 言語処理学会第23回年次大会, pp.763-766 (2017.3) Takumi Maruyama and Kazuhide Yamamoto. Sentence Simplification with Core Vocabulary. Proceedings of the International Conference on Asian Language Processing (IALP 2017), pp.363-366 (2017.12) [Paper] [Slide] [Abstract] Takumi Maruyama and Kazuhide Yamamoto. Simplified Corpus with Core Vocabulary. The 11th International Conference on Language Resources and Evaluation (LREC 2018), pp.1153-1160 (2018.5) [Paper] [Abstract] [Poster] [Page] Takumi Maruyama and Kazuhide Yamamoto. Lexical Substitution is Practical for Rare Word Simplification. The 32nd Pacific Asia Conference on Language, Information and Computation (PACLIC 32)
|
|